Monument Damage Hazards and Rehabilitation Technologies

May 31 - June 2, 2010 - Patras, Greece

EXPERIMENTAL INVESTIGATION ON LOCAL ASPECTS OF THE FRP STRENGTHENING OF MASONRY ARCHES

Matteo Panizza, Enrico Garbin, Maria Rosa Valluzzi, Claudio Modena

CCT University of Padua – Italy Department of Structural and Transportation Engineering

Monument Damage Hazards and Rehabilitation Technologies

FRP strengthening of masonry arches

with lowering at keystone

Examples of collapse mechanisms of unreinforced arches

Externally bonded FRP textiles (carbon, glass, aramid, basalt...)

Intrados application

Extrados application

Monument Damage Hazards and Rehabilitation Technologies

Local failure mechanisms of reinforced structures

EXTRADOS REINFORCEMENT

sliding on a mortar joint, due to excessive shear force, close to the springer opposite to the loading point in the case of asymmetric configuration

INTRADOS REINFORCEMENT

detachment of the reinforcement from the support, due to normal stresses related to the curved shape of the FRP itself, which is working under tension

Monument Damage Hazards and Rehabilitation Technologies

May 31 June 2, 2010 Patras, Greece

Intrados reinforcement – fibres detachment

The available model (see Valluzzi et al. 2001, Foraboschi 2004, Briccoli Bati & Rovero 2008) relates the critical load to the normal stress acting on the interface, assuming that it has to be lower than the tensile strength empirically measured by pull-off tests.

Basic idea: performing of an extensive campaign of mechanical tests on various types of solid clay bricks (extruded and facing ones, from different manufacturers), in order to investigate possible correlations among their main mechanical properties and the pull-off tensile strength

Investigated parameters: seven sets of bricks (4 extruded + 3 facing elements), two types of reinforcement (carbon and glass), presence/absence of primer

Three types of test <u>on each brick</u>: flexural, compressive or splitting, and pull-off tests (after the application of a layer of reinforcement)

Monument Damage Hazards and Rehabilitation Technologies

May 31 June 2, 2010 - Patras, Greece

SERIES	Brick type	Flexural tests	Compressive tests	Splitting tests	Pull-off tests
S1	extruded	*	*		CFRP w/o primer
		*	*		CFRP with primer
		*	*		GFRP with primer
S2	facing	*	*		CFRP with primer
		*	*		GFRP with primer
83	extruded	*	*		CFRP with primer
		*	*		GFRP with primer
		*		*	CFRP with primer
S4	facing	*	*		CFRP with primer
		*		*	CFRP with primer
S5	extruded	*	*		CFRP with primer
		*		*	CFRP with primer
S6	facing	*	*		CFRP with primer
		*		*	CFRP with primer
S7	facing				CFRP with primer
		*	* *		No fibres, with prime
					GFRP with primer
		*		*	No fibres, with prime

Mechanical tests performed

Pull-off test

Three-point flexion

Monument Damage Hazards and Rehabilitation Technologies

Results of pull-off tests

Failures (according to ASTM C1583/2004)

dCT

Monument Damage Hazards and Rehabilitation Technologies

May 31 - June 2, 2010 - Patras, Greece

Correlations between: pull-off and flexural strength pull-off and splitting strength

Monument Damage Hazards and Rehabilitation Technologies

May 31 June 2, 2010 Patras, Greece

Correlations between pull-off and compressive strength

Regressions based on code provisions (ACI, Italian DM96) for concrete

Power-based regressions

dCT

May 31 - June 2, 2010 - Patras, Greece

Monument Damage Hazards and Rehabilitation Technologies

dCT

Shear failure – extrados reinforcement

Available model: Coulomb-like strength of the mortar joint, which consider only the masonry contribution. **Starting point:** trying to measure a possible contribution of the reinforcement to the resistance mechanism of the joint.

Investigation method: performing of fourteen V-shape Peel Tests on solid clay bricks with EB CFRP.

Test set-up was derived from similar set-ups developed for reinforced concrete (Wu et al. 2004, Dai & Ueda 2007)

Tests were aimed at isolating the reinforcement contribution

 $\Sigma^{
m tn}$ International Symposium on the Conservation of Monuments in the Mediterranean Basin

May 31 - June 2, 2010 - Patras, Greece

Monument Damage Hazards and Rehabilitation Technologies

V-shape Peel Tests (1)

Experimental program

Specimen	brick type	loading path
Vp01	S4 - facing	monotonic (A)
Vp02	S3 - extruded	cyclic (A)
Vp03	S3 - extruded	cyclic (A)
Vp04	S4 - facing	cyclic (A)
Vp05	S4 - facing	monotonic (A)
Vp06	S4 - facing	cyclic (A)
Vp07	S3 - extruded	cyclic (B)
Vp08	S3 - extruded	cyclic (B)
Vp09	S3 - extruded	monotonic (B)
Vp10	S3 - extruded	cyclic (B)
Vp11	S4 - facing	cyclic (B)
Vp12	S5 - extruded	monotonic (B)
Vp13	S2 - facing	monotonic (C)
Vp14	S2 - facing	cyclic (C)

Specimens preparation

Test execution

Monument Damage Hazards and Rehabilitation Technologies

V-shape Peel Tests (2)

Typical load-displ. curves for monotonic (left) and cyclic test

Failure of extruded bricks

Failure of facing bricks

Monument Damage Hazards and Rehabilitation Technologies

May 31 - June 2, 2010 - Patras, Greece

V-shape Peel Tests: first results

Specimen	brick type	$P_{\rm u}$ N	$P_{ m u}/b_{ m f}$ N/mm	failure cycle	failure localization
Vp01	S4 - facing	1555	31.1	-	substrate
Vp02	S3 - extruded	1302	26.0	third	interface
Vp03	S3 - extruded	963	19.3	fourth	interf. and substrate
Vp04	S4 - facing	1280	25.6	second	substrate
Vp05	S4 - facing	1317	26.3	-	substrate
Vp06	S4 - facing	1795	35.9	first	interf. and substrate
Vp07	S3 - extruded	935	18.7	fourth	interface
Vp08	S3 - extruded	853	17.1	first	interface
Vp09	S3 - extruded	717	14.3	-	interface
Vp10	S3 - extruded	830	16.6	fourth	interface
Vp11	S4 - facing	1243	24.9	first	interf. and substrate
Vp12	S5 - extruded	937	18.7	-	interface
Vp13	S2 - facing	912	18.2	-	substrate
Vp14	S2 - facing	912	18.2	first	substrate

Monument Damage Hazards and Rehabilitation Technologies

Conclusions

Pull-off testing:

- the type of fibres seemed not to affect, as expected, the pull-off strength of the bricks, while some differences occurred on the failure mode;
- pull-off tensile strength could be correlated to the flexural, splitting and compressive strength of the bricks by means of power-based regressions;
- except the relation with the compressive strength, which seems to be correctly depicted by a single function, in the other cases extruded and facing bricks showed different correlations, although the trends were similar.

V-shape Peel Tests:

- peel loads, during the detachment, oscillated within a limited range, though the scattering was in some cases very large;
- maximum loads of around 18 N/mm, except for the S4 (about 28.8 N/mm), were recorded.
- in the case of monotonic tests, first peak loads were generally higher than the others;
- □ facing bricks, whose surface is more scabrous and irregular, generally showed higher peak loads and their failure involved a thin layer of clay, differently from the extruded bricks, whose failures mainly occurred within the clay-epoxy interface.

Advanced Masters in Structural Analysis of Monuments and Historical Constructions

University of Minho Portugal

Czech Technical University in Prague

Czech Republic

University of Padova

Italy

Technical University of Catalonia

Spain

Education and Training

http://www.msc-sahc.org/

Advanced Masters in Structural Analysis of Monuments and Historical Constructions

The language of instruction and the language of examinations is English. Courses (including course material), examinations, and study counselling are available in English only. Students are also encouraged to attend one national language and culture course (Portuguese, Spanish, Italian and Czech).

APPLICATION DEADLINE

Considering that the academic year starts in October, students wishing to attend the MSc should submit their applications to the MSc Secretariat no later than April 2007. A preliminary expression of interest to the Secretariat is much welcomed.

TUITION FEES

The admission fee for the MSc programme is 8 000 = (Euro). A number of third-country (non-EU, non-EU candidate countries and non-EEA-EFTA) scholarships, currently of 21 000 = (Euro), are available. A number of additional scholarships from the MSc Consortium, currently of 14 000 = (Euro), are planned for students from any geographical origin.

FURTHER INFORMATION

For further information, please contact the MSc Secretariat at secretariat@msc-sahc.org or visit the Master's webpage at http://www.msc-sahc.org.

Education and Training

Advanced Masters in Structural Analysis of Monuments and Historical Constructions

Starting in 2007/08 (Fall 2007)

http://www.msc-sahc.org/

Testing, Surveying and Monitoring

Advanced Structural Analysis

Design and Remedial Measures

Monument Damage Hazards and Rehabilitation Technologies

May 31 - June 2, 2010 - Patras, Greece

CCT University of Padua – Italy Department of Structural and Transportation Engineering