8th International Conference on Fracture Mechanics of Concrete and Concrete Structures

/FraMCo5-8/FraM

University of Castilla La-Mancha

March 10-14, 2013 / Toledo - Spain

PEEL STRENGTH TESTING OF FRP APPLIED TO CLAY BRICKS

Matteo Panizza, Enrico Garbin, Maria Rosa Valluzzi, Claudio Modena

University of Padua – Italy Department of Civil, Architectural and Environmental Engineering

FRP strengthening of masonry arches

/FraMCoS-8/FraM

with raising at keystone

1 transfirm

with lowering at keystone

Examples of collapse mechanisms of unreinforced arches

Externally Bonded FRP textiles (carbon, glass, aramid, basalt...)

Intrados application

Extrados application

Local failure mechanisms of reinforced structures

/FraMCoS-8/FraM

INTRADOS REINFORCEMENT

detachment of the reinforcement from the support, due to normal stresses related to the curved shape of the FRP itself, which is working under tension

EXTRADOS REINFORCEMENT

sliding on a mortar joint, due to excessive shear force, close to the springer opposite to the loading point in the case of asymmetric configuration

 $R_{\rm frp}$

R_m

Shear failure – extrados reinforcement

Available model: Coulomb-like strength of the mortar joint, which consider only the masonry contribution.Starting point: trying to measure a possible contribution of the reinforcement to the resistance mechanism of the joint.

Investigation method: performing of fourteen V-shape Peel Tests on solid clay bricks with EB CFRP.

/FraMCoS-8/FraM

Test set-up was derived from similar set-ups developed for reinforced concrete (Wu et al. 2005, Dai & Ueda 2007)

Tests were aimed at isolating the reinforcement contribution

Materials and test setup

Four sets of solid clay bricks: <u>2 extruded</u> and <u>2 facing</u> ones. One type of <u>EB CFRP</u> (high strength carbon) applied as reinforcement

 Table 1: Mechanical properties of bricks

/FraMCoS-8/FraM

Series	$f_{ m c}$ N/mm ²	$f_{ m f}$ N/mm ²	∫sp N/mm²	f_{p-o} N/mm ²
EB1	33.3	2.97	1.34	2.75
EB2	38.4	3.89	3.51	3.02
FB1	21.1	5.29	n.a.	1.80
FB2	22.1	5.42	4.02	1.61

 Table 2: Properties of reinforcement components

Adhesive MBrace [®] Saturant		
Charact. compr. strength	>80	N/mm ²
Charact. direct tens. strength	>50	N/mm ²
Maximum tensile strain	2.5	%
Tensile elastic modulus	>3000	N/mm ²
		`
High-strength Carbon MBra	ce®C1-30)
High-strength Carbon MBra Equivalent thickness	ce®C1-3 (0.165) mm
High-strength Carbon MBraEquivalent thicknessCharact. direct tens. strength	0.165 3430	mm N/mm ²
High-strength Carbon MBra Equivalent thickness Charact. direct tens. strength Maximum tensile strain	0.165 3430 1.5	mm N/mm ² %

Figure 1: Design scheme of a specimen

Test matrix and performing

 Table 3: Experimental matrix of V-shape Peel

/FraMCoS-8/FraM

Tests

Sample	brick type	loading path	
VPT01 (pilot test)	FB2 - facing	monotonic (A)	
VPT02 (pilot test)	EB1 - extruded	cyclic (A)	
VPT03	EB1 - extruded	cyclic (A)	
VPT04	FB2 - facing	cyclic (A)	
VPT05	FB2 - facing	monotonic (A)	
VPT06	FB2 - facing	cyclic (A)	
VPT07	EB1 - extruded	cyclic (B)	
VPT08	EB1 - extruded	cyclic (B)	
VPT09	EB1 - extruded	monotonic (B)	
VPT10	EB1 - extruded	cyclic (B)	
VPT11	FB2 - facing	cyclic (B)	
VPT12	EB2 - extruded	monotonic (B)	
VPT13	FB1 - facing	monotonic (C)	
VPT14	FB1 - facing	cyclic (C)	

Table 4: Adopted test procedures

Procedure	Step	Rate mm/min	Pin direct.	Duration s
Monotonic A	1	2.0	down	up to fail.
	1	2.0	down	180 s
Cualia A	2	2.0	up	150 s
Cyclic A	3	2.0	down	600 s
	4	back to ste	ep 2	
Monotonic B	1	1.0	down	up to fail.
	1	1.0	down	360 s
Cuelie P	2	2.0	up	150 s
Cyclic B	3	2.0	down	600 s
	4	back to sto	ep 2	
Monotonic C	1	0.6	down	up to fail.
	1	0.6	down	600 s
Cualia C	2	1.2	up	250 s
Cyclic C	3	1.2	down	500 s
	4	back to ste	ep 2	

THE RECEIPTION

Results (1)

/FraMCoS-8/FraM

Example of peel angle progression

typical load-displacement curves

failure of extruded bricks

failure of facing bricks

Results (2)

Brick type	Sample	P _{max} N	$P_{ m max}/b_{ m f}$ N/mm	Corresp. cycle	Fail. loc.
EB1	VPT02	1308	13.1	third	Ι
EB1	VPT03	898	9.0	third	I+S
EB1	VPT07	765	7.7	first	Ι
EB1	VPT08	850	8.5	second	Ι
EB1	VPT09	628	6.3	-	Ι
EB1	VPT10	810	8.1	first	Ι
EB2	VPT12	940	9.4	-	Ι
FB1	VPT13	909	9.1	-	S
FB1	VPT14	911	9.1	first	S
FB2	VPT01	1563	15.6	-	S
FB2	VPT04	1283	12.8	second	S
FB2	VPT05	1317	13.2	-	S
FB2	VPT06	1795	18.0	first	I+S
FB2	VPT11	1241	12.4	first	I+S

/FraMCoS-8/FraM

measured peel angles (samples sorted by brick type) [at max load or mean angles]

maximum loads and type of failure (samples sorted by brick type) [I => "interface", S => "substrate"]

	1 st cycle		2 nd cycle		3 rd cycle	
Sample	$\overline{ oldsymbol{ heta}_{P_{ ext{max}}} } \ ext{deg} }$	$ heta_{ m avg}$ deg	$ heta_{P_{\max}}$ deg	$ heta_{ m avg}$ deg	$ heta_{P_{\max}}$ deg	$ heta_{ m avg}$ deg
VPT02	5.04	5.04	4.20	3.74	4.11	0.75
VPT03	2.87	2.87	n.a.	n.a.	n.a.	n.a.
VPT07	4.31	4.31	3.28	3.02	4.18	3.63
VPT08	5.52	5.52	5.79	4.29	5.04	4.61
VPT09	3.62	3.62				
VPT10	3.08	3.08	2.00	1.97	2.85	2.58
VPT12	5.49	5.49				
VPT13	3.80	3.80				
VPT14	4.58	4.58	3.91	3.68	3.64	3.41
VPT01	4.40	4.38				
VPT04	5.09	5.09	5.10	4.02	n.a.	n.a.
VPT05	3.24	2.92				
VPT06	4.98	4.98	4.13	2.81	2.72	2.44
VPT11	3.77	3.77	3.06	2.41	2.29	1.98

Analyses

as reported in De Lorenzis & Zavarise (2008)

/FraMCoS-8/FraM

 $F_0 = F\cos\theta$

$$M_{0} = \sqrt{\frac{E_{\rm f} t_{\rm f}^{3}}{6}} \left[\frac{F^{2} \sin^{2} \theta}{2E_{\rm f} t_{\rm f}} + F \left(1 - \cos \theta \right) \right]$$
$$G_{\rm I} = \frac{6M_{0}^{2}}{E_{\rm f} t_{\rm f}^{3}}; \ G_{\rm II} = \frac{F_{0}^{2}}{2E_{\rm f} t_{\rm f}}; \ G = G_{\rm I} + G_{\rm II}$$

$$\psi = \arctan \sqrt{\frac{G_{\mathrm{II}}}{G_{\mathrm{I}}}} = \arctan \frac{t_{\mathrm{f}} F_{\mathrm{0}}}{\sqrt{12} E_{\mathrm{f}}}$$

as reported in Wu et al. (2005) and Dai et al.

$G_{\mathbf{W}}$	$\ \approx$	$E_{\rm f} t_{\rm f} \left(\frac{1}{2} \tan^2 \theta + \frac{1}{\sqrt{1 + \tan^2 \theta}} - \frac{3}{8} E_{\rm f} t_{\rm f} \tan^4 \theta \right)$	_
P_{\max}	= I	$E_{ m f}t_{ m f}b_{ m f} an^3 heta$	
P_{\max}	= 2	$2.087b_{\rm f}G_{\rm W}^{0.75} \left(E_{\rm f}t_{\rm f} ight)^{0.25}$	

(2007)

Figure 7: Phase versus peel angles

Sample	G _I N/mm	G _{II} N/mm	ψ deg	<i>G</i> N/mm	$G_{ m W}$ N/mm	$\Delta G \ \%$
VPT02	0.472	0.436	43.9	0.908	0.344	-62%
VPT03	0.151	0.190	48.3	0.341	0.122	-64%
VPT07	0.289	0.136	34.4	0.425	0.168	-60%
VPT08	0.431	0.093	24.9	0.524	0.194	-63%
VPT09	0.199	0.129	38.9	0.329	0.129	-61%
VPT10	0.219	0.298	49.4	0.517	0.182	-65%
VPT12	0.452	0.126	27.8	0.578	0.221	-62%
VPT13	0.302	0.247	42.1	0.549	0.212	-61%
VPT14	0.365	0.171	34.4	0.536	0.212	-60%
VPT01	0.603	0.544	43.5	1.147	0.436	-62%
VPT04	0.573	0.273	34.6	0.846	0.335	-60%
VPT05	0.374	0.714	54.1	1.089	0.347	-68%
VPT06	0.784	0.560	40.2	1.344	0.524	-61%
VPT11	0.411	0.467	46.9	0.878	0.321	-63%

Figure 8: Evaluated mode I and II components of mixed-mode fracture energy

Conclusions

/FraMCoS-8/FraM

- Fourteen V-shape Peel Tests, which test set-up was based on similar tests carried out on concrete substrates, were performed using CFRP reinforcement applied to solid clay bricks. Test were aimed at investigating the possible FRP reinforcement contribution to the shear strength of thin masonry arches and vaults. Although preliminary tests, they allowed identifying the main characteristics of the investigated phenomenon.
- □ The experimental set-up proved to by rather feasible and adaptable to most universal test machines. Observations do not differ much from what Wu et al. (2005) and Dai et al. (2007) reported in the case of concrete substrates.
- Peel load, during the detachment, oscillated within a limited range, although scattering was in some cases very large; maximum loads of about 8–13 N/mm were observed, except for the FB2 series that resisted up to 18.8 N/mm. First peak load was generally higher than the others, for monotonic tests.
- Peel angles, similarly to peel loads, oscillated within a rather moderate range. Measured values varied in most cases between 2 and 6 degrees, however their measurement should be considered qualitative since affected by a certain imprecision and simplifying approximations.
- Calculated mixed-mode fracture energies ranged in most cases from 0.3 to 1 N/mm, hence their order of magnitude is rather consistent with values reported in literature for quasibrittle substrates, albeit markedly affected by peel angle measurement.

8th International Conference on Fracture Mechanics of Concrete and Concrete Structures

/FraMCo5-8/FraM

University of Castilla La-Mancha

March 10-14, 2013 / Toledo - Spain

THANK YOU

University of Padua – Italy Department of Civil, Architectural and Environmental Engineering

